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Abstract. We prove that a set of N not necessarily distinct points in the plane
determine a unique, real analytic solution to the first order Ginzburg-Landau
equations with vortex number N. This solution has the property that the Higgs
field vanishes only at the points in the set and the order of vanishing at a given
point is determined by the multiplicity of that point in the set. We prove further
that these are the only C°° solutions to the first order Ginzburg-Landau
equations.

1. Introduction

A mathematical model of superconductors is given by the Ginzburg-Landau
equations [1]. These equations exhibit vortex solutions which may be viewed as
finite energy solutions to the equations describing the two dimensional Abelian
Higgs model [2]. After suitable rescaling, the equations have one coupling
constant, λ, whose value determines whether the equations describe a type I or type
II superconductor. The value λ = 1 is the critical value. In this case, the energy of a
configuration is bounded below by a topological invariant, a multiple of the vortex
number. Any configuration which achieves this minimum energy will be a solution
of the Ginzburg-Landau equations. To find solutions with this minimum bound,
one need only solve a set of first order coupled equations for the vector potential
and the Higgs field rather than the more general second order equations. DeVega
and Schnaposnik [3] in an analysis of the equations, gave a numerical argument
for the existence of a cylindrically symmetric solution to the first order equations
with vortex number N which has been interpreted as N-vortices superimposed at a
point. Weinberg [4] recently proved that if a solution of the Ginzburg-Landau
equations with vortex number N exists then the dimension of the space of moduli
of this solution must be 2N. This led him to conjecture that there exists a 2AΓ
parameter family of solutions with vortex number TV and that the parameters of a
solution may be interpreted as being the positions in R2 of the N vortices. Recent
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numerical work by Jacobs and Rebbi [5] concerning the interaction energy of a
pair of vortices lends support to this conjecture.

In this paper we prove the validity of Weinberg's conjecture. To be precise, we
prove that the solutions to the first order Ginzburg-Landau equations with
coupling constant λ—\ are uniquely determined by a set of N not necessarily
distinct points in the plane corresponding to the zeros of the Higgs field. Every set
of AT points determines one such solution. The vortex number of this solution is N.
The solution manifold of the first order Ginzburg-Landau equations with vortex
number N is isomorphic to IR2N.

II. The Equations

After a suitable rescaling, the action for the two-dimensional Abelian Higgs model
is:

sί= \ d2xl(δJ-iAJ)φl2 + ±FjkFJk + (\φ\2-ί}2 . (2.1)
R2 I δ J

The Higgs field φ is a complex scalar field, or alternatively it may be
interpreted as a cross-section of a complex line bundle over IR2. The A are the
components of the connection on the line bundle; Fjk = djAk — dkAj is the
curvature. The critical value of the coupling constant A is 1. Henceforth we shall
only discuss this case. Finite action requires that a configuration (AJ9 φ) have the
following behavior as |x| approaches infinity:

M->1
(2.2)

DAφ = dφ — iAφ-^ Q, as |x|-»oo.

The usual ίopological arguments imply that the vortex number,

n=±- Jd 2xF 1 2 (2.3)
In R2

is an integer and is unchanged by finite action perturbations of the fields. The
integer n is a topological invariant the first Chern number of the complex line
bundle in which A is a connection.

As BogomoΓnyi [6] pointed out, a lower bound on the action results from
rewriting the action via an integration by parts as

±i ί d2xF12 . (2.4)
ΊR2

The upper sign corresponds to positive vortex number and the lower sign to
negative vortex number. In Eq. (2.4) φί = Reφ and φ2 = lmφ. We shall treat the
case of positive vortex number only, the case of n<0 being completely analogous.
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The lower bound of BogomoΓnyi is

(2.5)

This lower bound is realized if and only if

2-A2φί) = 0, (2.6a)

2-A1φ1) = 09 (2.6b)

= V. (2.6c)

Equations similar to these arise in the study of cylindrically symmetric self-dual
solutions to four dimensional SU(2) Yang-Mills equations [7]. As in that case, it is
possible to reduce Eqs. (2.6) to one nonlinear second order differential equation for
one unknown function. To do this set

. (2.7a)

Equations (2.6a) and (2.6b) are the real and imaginary parts of the complex
valued equation

2dφ-ίAφ = 0 (2.7b)

This equation may be solved for A

A=-2id\nφ. (2.8)

Define the complex valued function /=/i + if2 with f± and /2 real valued on IR2 by

φ = ef. (2.9)

In terms of the real functions /x and /2 the components of A and the curvature are

(2.10)

The asymptotic condition that \φ\ = ί as |x| approaches infinity demands that

Lim/1(x) = 0. (2.
|x|-» oo

Equation (2.6c) is a second order nonlinear differential equation for /x [5] :

(2.12)

We reinterpret the topological invariant n as defined in equation (2.3) in terms
of the functions f± and /2. For large values of |x|,

φ-+eίf2, as |x|-»oo (2.13a)

and

, (2.13b)



280 C. H. Taubes

where n is the vortex number defined in Eq. (2.3). Homotopy considerations imply
that no continuous function on IR2 can have this asymptotic behavior. The
Ginzburg-Landau equations leave /2 undetermined. This is the manifestation of
the gauge in variance of the original lagrangian. Any /2 with the above asymptotic
behavior must be singular on some set in the plane. If we are interested in at least
continuous solutions to the first order Ginzburg-Landau equations, then φ must
vanish on a nontrivial set in the plane and there must exist a function /2 satis-
fying Eq. (2.13b) which has its singularities only on this set. In the Appendix we
shall prove that a necessary condition for φ to solve the first order Ginzburg-
Landau equations is that the zero set of φ be discrete. For now we shall assume
that this is the case. If we demand that our solutions be C1 on IR2, we are further
restricted to have φ vanish as an integer power of (x — at) as x approaches at for a{ a
zero of φ. Any solution to the first order equations determines a set of N points
(αl5 ...,flN) in IR2. These points need not be distinct, the number of times a given
point occurs corresponds to the order of vanishing of φ at that point. As x-^ak the
function /x must have the behavior:

;-+^ln(x-αk)
2, (2.14)

\x\-+ak 2

where nk is the order of vanishing of φ at ak. Given /x with this behavior, we can
find a function /2 with the asymptotic behavior expressed in (2.13b) which is in fact

C » i n R 2 \ U K } :
\*=1

Λ= Σ 0*. (2.15)
k = l

where

k2

The topological charge, n, is equal to the size, JV, of the set (α1,α2, ...,<%).
A simple calculation shows that with /2 given above and fl as in Eq.(2.14),

\ n

vanishing as |x|-*oo and C^inRΛ (J {ak} the components of the connection
\ k = l

[Eq.(2.10)] are in fact infinitely differentiable on ]R2.

III. The Results

Up to now, solutions to the first order Ginzburg-Landau equations with vortex
number n are thought to exist only when the n points (α1 ?..., an) are the same [3].
The main result of this paper is the following theorem:

Theorem 1. To each point (α1?...,αj in IR2 x ... xIR2 = IR2", there exists a unique
globally C°° solution to Eqs. (2.6a)-(2.6c) which satisfies the conditions of Eqs.(2.2)
and (2.3) and satisfies the further conditions that

{xeIR2|0(x)=0}= [J {αj (3.1)
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with the order of vanishing of φ at a point α0 being precisely the number of times a0

appears in the set {al9...>an}. Π
From the discussion of the last section, we will have proved Theorem 1 if we

can prove that Eq.(2.12) has a unique solution, f ί 9 such that /Ί is C°° in
\ n

EM (J {akϊ ' Eq.(2.11) is satisfied as |x|->oo and as x approaches each point ak,f^
\ f c = l

has the behavior described by Eq.(2.14). To do this, let

(3.2)

with λ>4n a real number. On IR2\ \J {ak}, u0 is infinitely differentiate and
formally \ f e = 1

+4π Σ *(*-**)• (3-3)

Here, <5(*) is ίhe Dirac delta function. Define a function g0 by

so that on IR2\ (J {αfc}, g0 and -Jw0 agree. Next we define a new unknown
\ k = l

function υ by :

2fl=u0 + v. (3.5)

If /j satisfies Eq.(2.12) and has the behavior at infinity and at the points {αk}
discussed above, then v is a solution to the equation

:0, (3.6a)

lim t; = 0. (3.6b)
|x|->oo

Theorem I then follows from

Theorem I'. For every point (αl9 . . .,αn) in IR2 x IR2 x . . . x IR2 =1R2" and u0 and g0

defined by Eqs.(3.2) and (3.4), respectively, there exists a unique function v, real
analytic in IR2, satisfying (3.6a) and (3.6b). Π

We observe that (3.6a) is formally the variational equations of the functional

φ) = J d2x&μvdμv -~v(l-g0) + e»°(ev - 1)) . (3.7)
IR2

The strategy for proving Theorem ΐ is to define the functional α(υ) on an
appropriate Banach space and then appeal to the following results of functional
analysis. For a detailed exposition of the techniques used here see e.g.,
Vainberg [8].

Proposition 3.1. If α strictly convex functional G(x) defined in a linear space E has a
minimum at a point x0, then x0 is an absolute minimum point, and there are no other
minimum points. Π
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For a proof, see [8], p. 96.
In Sect. IV we show that there exists an appropriate Banach space on which

a(v) is strictly convex. This proves the uniqueness assertion of Theorem Γ.
The existence of a solution will follow if we can show that a(v) satisfies the

hypothesis of

Proposition 3.2. Let G(x) be a real Gateaux differentiable functional defined in a real
reflexive Banach space E, which is weakly lower semi-continuous and satisfies the
condition

<G'(x),x>>0 (3.8)

for any vector xe£, ||x|| =β>0, and Gf(x) = grad G(x). Then there exists an interior
point x0 of the ball \\x\\ ^ Rat which f(x) has a local minimum so that G'(x) = 0. Π

For a proof, see [8], p. 100.
We prove in Sect. V that a(υ) satisfies the hypothesis of Proposition 3.2. This

proves the existence of weak solution to Eq.(3.6a).
In Sect. VI we prove that the solution must in fact be C00 on 1R2.

IV. Properties of a(v)

We begin by defining a Banach space H to be the completion of C^(1R2) (the space
of infinitely differentiable functions with compact support) in the norm

f f
LiR2

(4.1)

The space H is the first Sobolev space on R2. If Ω is any Lebesgue measurable
set in IR2, define for 1 ̂ p, q < oo

2 \ Ί l / p

Σ
μ=l

(4.2)

The functional a(v) as defined in Eq. (3.7) is defined on C^(IR2) which is dense
in£Γ.

We state the fundamental properties of the functional a(v) in the following set
of propositions and their corollaries :

Proposition 4.1. Define the functional a(v) on C^ by

)= ί &8μυdμv-v(l -00) + έ? V- 1)} (4.3)

with u0 and g0 defined by Eqs. (3.2) and (3.4); then a(v) extends to a nonlinear
functional on H with domain H. Π

Proposition 4.2. The Gateaux derivative of a(v\ a'(v,h), exists for all v, heH and

af(v,h)=lim-(a(v + th)-a(v))= J {duvdh-h(l-g0-eu°} + heu°(ev-l)} . (4.4)
ί^O t i
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Furthermore, for fixed v, a'(v, •) is a bounded linear functional on H, denoted
(grada(v\hy. For fixed heH, a'( ,h) is a nonlinear functional on H with domain
H. Π

Proposition 4.3. The functional a(v) is strictly convex on H. Π

Before proving these propositions we state and prove some immediate
corollaries:

Corollary 4.4. The functional a(υ) is weakly lower semi-continuous on H. Π

Proof of Corollary 4.4. From Proposition 4.2 the Gateaux differential a'(v, ) for
fixed veH is bounded and hence continuous on H. The result follows from
Theorem8,6 of Vainberg[8], p.82.

Corollary 4.5. v0 is a minimum of the functional a(v) if and only if grad a(v0) — 0. Π

Proof of Corollary 4.5. From Proposition 4.2 Gateaux differential, a'(v, •) for fixed v
is linear. From Proposition 4.3, a(v) is convex on H. The result follows from
Theorem 9.1 of Vainberg[8], p. 91.

We remark that Proposition 4.3 implies that if a(v) has a minimum on H, that
minimum is unique. Corollary 4.5 states that if the minimum exists, then it is a
weak solution to Eqs.(3.6a) and (3.6b).

Proof of Proposition 4.1, We must show that if ve H then a(v) is finite. Write a(v) as
a sum of three terms:

φ) = j $dμυdμυ- f v(ΐ-g0-O + f <*>(ev-l-v). (4.5)
R2 R2 R2

We note that the first term on the right in Eq. (4.5) is bounded by l/2| |z;| |I 2. Using
Holder's inequality we have for the second term

Since 1 — gΌ — eu° is in L2(ΊR2, d2x) the second term is bounded on H. For the third
term in Eq.(4.5) we have

J euo(ev-1-v) <: $ \ev-ί-v\. (4.7)
[R2 R2

It remains to be shown that the right hand side of Eq.(4.7) is finite for all veH.
For ρ>0, define I^QV) by

I1(ρv)= J (exp(ρ2ι;2)— i}dx. (4.8)
R2

Given veH, there exists ρ>0 such that I1(ρv)<ao (cf. [9], pp.242-246). Fix

such a ρ. To estimate J \ev— 1 — v\ define sets ί21? Ω2 ClR2 by
R2

,! ' (4-9)
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In Ωj we have ρ2v2^.v, hence

In ί22, f is bounded. Hence there exists a constant c > 0 such that

in Ω2 .

Therefore :

C. H. Taubes

(4.10)

(4.11)

(4.12)J \eυ-l-v\^I2 + c J t;2<oo ,
1R2 R2

and we have proved

Lemma 4.6. For α// t eίί, the functional

R(v)= j |eϋ-l-ί;|
R2

is finite.

Proof of Proposition 4.2. Let v, heH. The Gateaux derivative of a(v) is by
definition

„ M Γ α
α (t; ft) = hm

-

=}!ίs{f1 ° U2

= J {dμvc

(4.13)

To prove Proposition 4.2 we must first show that Eq. (4.4) is correct. Once we have
established Eq. (4.4) it remains for us to demonstrate that for fixed ueH, a'(υ, •) is a
bounded functional on H and for fixed heH, the nonlinear functional 0'( ,ft) has
domain H.

Lemma 4.7. For any heH

Proof of Lemma 4.7. We first note that

(4.14)

(4.15)

For the remaining term in Eq. (4.14) we have the bound

lim I*
(eth-

°ev

R2

'Ί
(eth —

Q

1

ί

1

ί

— ίft)

-ίΛ)

< lim f
~ ί-O R2

<«•-!)

^uo(eth-l-th)
1

(4.16)
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In order to show that the right hand side of (4.16) is zero in the limit that t goes
to zero we need the estimate

Lemma 4.8. For any veH and k^2

II k \

Proof of Lemma 4.8. This estimate is proved in Adams [9], pp. 103-106.

We return to the proof of Lemma 4.7. For the first term on the right hand side
of (4.16) we have

1 I i^.i.^l i i^-i-ίftig I f; lί*-W (4.18)
1 R2 l R2 R2 fc=2 K

In (4.18) we have defined eth by its power series. By the Monotone Convergence
Theorem we can interchange the order of integration and summation. Using (4.17)
we have

J \e«°(eth-i-th)\^4 t-i (J/2||ι;||1>2;R2)
fe. (4.19)

fc=2

Next we remark that by Stirling's formula, n" is asymptotic to nlen(2Πn)l/2 and
that 3iV>0 such that

(4.20)

Choose N such that (4.20) holds. Then

1 J ̂ (^-1-^)1^4 £ ί""1 ^(V^INl.***)*ί ro2 J.-J Kl

+ 4 Σ ί*-H]Λ2φ|lι,2;]R2)*. (4.21)

The first term on the right hand side of (4.21) is finite and vanishes as ί->0. The

second term is an infinite sum which converges for ί<(|/2e||ι;||1 2 ]R2)~1 and
vanishes as tN as ί->0.

For the second term in (4.16) we use Holder's inequality to write

(eth-l-th) ^v

~ R2

" 2 . (4.22)

ϋsί eu°

The function (ev—l) for i eH is square integrable on L2(IR2,6?x). This follows
from the bound

J (ev-\)2^ j \e2v-2v-l\+2 | |βϋ-ί;-l| (4.23)
R2 R2 1R2

which is finite due to Lemma 4.6. We remark that J \eth—l — th\2 is order t4.
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For, given any ueH we have

oo I

Σ Z M| OΛ* (4.24)

The last step follows from the Monotone Convergence Theorem and the fact that
the sum has strictly positive terms. Using Lemma 4.8 to bound INIS^.^ and
choosing an integer N so that inequality (4.20) holds we have

f \pu—\ _ 7 / / |2<7 V yJ \e i u\ ^z 2, L (-
R2 n = 4 £ = 0 V"

+ 2 f; (2]/2eM| l ι2;R2)". (4.25)
n = JV + 1

Setting u = th, we see that for sufficiently small ί, the right hand side of (4.25) is
finite and order ί4. This implies that as f->0 the right hand side of (4.22) vanishes,
proving Lemma 4.7.

To prove the remaining assertions of Proposition 4.2 notice that

\a'(υ;h)\^ f \dμυdμh\+ f |Λ[|l-^o-^l+ ί W\ev-i\ . (4.26)
R2 R2 R2

We use Holder's inequality to bound \a'(v, h)\ by

(4.27)
U2 / J

The right hand side of (4,27) is finite for any veH. This completes the proof of
Proposition 4.2.

Proof of Proposition 4.3. To prove that the functional a(v) is strictly convex we
must show that

Φ»ι +(1 -y)v2)^ya(vί) + (l-γ)a(v2) . (4.28)

For all vl9 v2εH; γe(0, 1) with equality only when vί = v2. This result follows from
the strict convexity of the functional J d vdμv on H and the strict convexity of the
exponential function. We leave the details to the reader.

V. The Existence of Weak Solutions

To prove the existence assertion of Theorem Γ it is sufficient to show that the
functional a(v) satisfies the conditions set forth in Proposition 3.2. Gateaux
differentiability of a(v) was proven in Proposition 4.2. Weak lower semi-continuity
of the functional is a result of Corollary 4.4. It remains for us to show that there
exists a positive number R such that Eq. (3.8) is obeyed by <grad a(v\ vy for all v
with norm equal to R. The existence of such an R follows from the following
estimate:
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Proposition 5.1. There exists constants α>0, b and /c>0 such that for all veH

-> °

The proof of Proposition 5.1 rests on the following properties of the functions
u0 and g0 :

Lemma 5.2. Let u0 and g0 be defined by Eq. (3.2) and (3.4) respectively. Let λ>4n.
Then

a) There exists a constant cί>0 such that for all xeIR2

(5.2)

b) For all xeIR2

l-g0(x)-euo(x)>Q. (5.3)

Proof of Lemma 5.2. For part (a) we note that for λ > 4n

0o^ j<L (5.4)

For part (b) we have

(5 5)
fc=l \{A — Uk) -ΓΛ) k=1

Define γ = 4n/λ < 1 and

With this notation we rewrite (5.5) as

n V "

k=l nfc=l

Each Zfc is less than 1 so that

Using this inequality in (5.7) gives finally

. 1 Λ ? A o
~ Σ ^ ^ i - Γ Σ^<i (5-9)

n k=l n fe=l Π fc=l

Inequality (5.9) proves part (b) of the lemma.

Proqf o/ Proposition 5.i. Recall that the functional a'(v\υ) is given by

af(υ;υ)= f [3^5μt; + ϋ(^β + w ̂  1 +^0)] . (5.10)
IR2

We consider the expression v(euo + v— 1 +g0) pointwise.
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Case i. If φc) ̂  0 then

It is simple to show that for any xeIR2,

<?*-l-x>0 (5.12)

with equality only at x = 0, so the third term in (5.11) is positive. Completing the
square in (5.11) to eliminate the linear term we have for φc)g:0 and any βe(0, 1)
the inequality

g0)
2 . (5.13)0 0 0 .

U ~ P)

Case 2. If φc)^0 we have

v(e»° + v-l+g0) = \v\(l-g0-e"°) + \v\e»°(l-e-W). (5.14)

To continue further, notice that for x^O

l-e- (5.15)

with equality only when x = Q. Inequality (5.15) implies that

(5.16)

The last inequality in (5.16) results from the inequalities (a) and (b) of Lemma 5.2.
Because β, c1 and (l + M)"1 are smaller than 1, we have proved that for any

βe(0, 1) and any veH

a'(v,v)^ J dμvδμv+ - _ - ί (u0 + 9of . (5.17)
R2 \ l+\υ\ I (I-P) R2

The function (UQ + gQ)2 is integrable. We choose β= 1/2 and define

In order to continue we prove

Lemma 5.3. For any veH

Proof of Lemma 5.3. We use Holder's inequality to write
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Inequality (5.19) is true if v = 0 so we may assume in (5.20) that i φO. Squaring
both sides of (5.20) and dividing by (IMIo52;]R2 + IMIo.s π^) yields the result.

Given a υeH, we define the number σe(0, 1) by

(5.21)
ί dμvdμv = σ \\v\\l t2;K2 .

1R2

From Lemma 4.9 we have the inequality

Nθ,3;R2^Ml,2;R2> (5-22)

where /c = 8 ]/2 27. These definitions and Lemma 5.3 give

- " l ' -^. (5.23)

Finally, if we set ot = 3/4βcΐ we have for any veH the result:

This completes the proof of the existence and uniqueness of a weak solution to
Eqs. (3.6a) and (3.6b).

The functions u0 and g0 as defined in Eqs. (3.2) and (3.4) depend not only on
the points (α l5...,απ)eIR2 x . . .xlR 2 but also on the parameter λ. Our estimates
required λ>4n. Any two values, λί,λ2>0 of λ give the same solution. For let vt

satisfy (3.6a) and (3.6 b) with
n / 1

r\ V^ ι / -i , ^iuo(1)=" Σ l n( 1 + 7 ÎΓ^

(5.25)

We note that u0(l) — uQ(2) is in if. By uniqueness then we have

. (5.26)

VI. Properties of the Solution

We now prove the regularity of the weak solution obtained in Sect. V. The Sobolev
space Pf^IR2) is defined as the completion of C^(IR2) in the norm

II <9αι 3α2 I I
IML,p= Σ fc^feH (6'1}

α ι + α 2 ^ m ll17-^! UΛl2 Hθ,p;IR2

with α 1 ?α 2 nonnegative integers.
We restate the final assertion of Theorem Γ in a proposition :
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Proposition 6.1. The unique weak solution, VQ to Eqs. (3.6a) and (3.6b) in H is real
analytic in IR2. D

Proof of Proposition 6Λ. Since u0 is a weak solution of (3.6a) and (3.6b),
zlί;0eL2(ΪR2).

Thus v0 is in the Sobolev space PF2'2(IR2). By the Sobolev Imbedding Theorem
([9], p. 97), ι;0eC°(lR2). Repeating this argument for derivatives of ι?0 we obtain
ve Cfe(IR2) for k = 0,1,.... By a standard theorem ([10], pp. 170-180) we have v0 is
real analytic in IR2.

Appendix

The purpose of this appendix is to prove the following proposition.

Proposition Al.l Let A and φ be respectively a C°° connection and Higgs field on
IR2 which satisfy the first order Ginzburg- Landau equations. Then {xeJR-2\φ(x) = Q}
is discrete. D

Proof of Proposition Al.l. Our plan is to assume the converse and show that a
contradiction results. Therefore assume that there exists A and φ satisfying the
conditions of Proposition Al.l with {xeIR2|φ(x) = 0} not discrete. Denote by Z the
zero set of φ. If Z is not discrete then there exists a Jordan arc, y (for definitions,
see e.g. Ahlfors [11], p. 69), in Z. Given any open set U intersecting γ there exists
an open set Vc U such that y divides V into two nonempty sets F+ and F_ such
that V+ n V_ — y and yn V+ is open in y. Because Z is the zero set of the C°° function
\φ\2 on IR2, it is possible to choose a Jordan arc y CZ and an open set V as above
such that

By taking a smaller open set if necessary we may assume that V is simply
connected.

Select an open set WC V such that y divides HP into two nonempty sets W+_and
W_ with W+ simply connected; its closure W+ compact; its boundary dW+ a
Jordan curve and γnW+ open in y.

In the interior of F+, \n\φ\2 = u+ is a C°° function which satisfies

By assumption, \φ\2 is C°° in V. Standard arguments (see ej*., Lions and Magenes
[12]) imply that there exists a unique C°° function h on W+ satisfying

- = n n t +

with _ (A1.3)
ft = 0 on dW+ .

In the interior of W we have
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Hence, in the interior of W+

with u a harmonic function in int W+. Since |φ|2=0 on 7 and is continuous in V
and ft|y = 0 it follows that for fixed ye 7

lim zφc)-» — oo. (A1.6)
|x-y|-*0

xeintW+

Thus we are led to consider the possible behavior on the boundary, dW+9 of a
function u harmonic in int W+ . We note that it is sufficient to study this question
for W+ the unit disc in 1R2 and 7 a subset of the unit circle. This follows from the
following two fundamental theorems on conformal mappings.

Theorem A1.2 (Riemann Mapping Theorem). The interior of any simply-connected
domain R with more than one frontier-point can be represented on the interior of the
unit circle by means of a one to one conformal transformation. D

Theorem A1.3. // one Jordan domain is transformed conformally into another, then
the transformation is one-one and continuous in the closed domain, and the two
frontiers are described in the same sense by moving a point on one and the
corresponding point on the other. D

For proofs and discussions of these two theorems, see, e.g., Caratheodory [13],
pp. 70-86.

Without loss of generality we take for ΘQ > 0

Here we are representing the unit disc, D, in IR2 as the set of complex numbers with
modulus less than or equal to one.

Lemma A1.4. Given rc>0, u(x) as above and W+=D, there exists 0<ρn<l such
that

L) The set {θe[ΰ,2π~]\u(ρne
iθ)< — n} has Lebesgue measure Θn>θ0 .

Proof of Lemma Ai.4. Statement L) follows from (A1.6) and the continuity of u in
int D.

Let {ρw}*- i be a sequence of positive numbers which satisfy the conditions and
statement L) of Lemma A 1,4, with the added proviso that ρn < ρn + ί for n = 1, . . . oo.

We have l imρ =1.
n-»oo *n

Since u is harmonic in int D,

(For a proof of this statement, see e.g., Ahlfors [11], p. 164.) w(0) is a finite constant
independent of n. Equation (A1.7) implies that

sup
βe[0,2π]
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Let znε{\z\ = ρn} be such that

sup u(ρne
iθ) = u(zn) . (A1.9)

θe[0,2π]

The compactness of the interval [0,2π] insures that zn exists. The set {zn}™= x form a
sequence in D and hence have a limit point z^ e D. Since u is harmonic, z^ e dD and
u(zao)= + 00. Applying the inverse mapping of D into FP+ we see that this
contradicts that \φ\2 = Qxp{u + h} is continuous in the set V. Q.E.D.
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